

1

<u>Title</u>

OPTIMIZATION OF INTEGRATED WATER QUALITY MANAGEMENT FOR AGRICULTURAL EFFICIENCY AND ENVIRONMENTAL CONSERVATION IN THE NILE DELTA

<u>By</u> Amr Fleifle

Lecturer (Assistant Professor), Department of Irrigation Engineering and Hydraulics, Faculty of Engineering, Alexandria University, Egypt

1. Introduction

.source: Global representation of the water stress index (Pfister et al., 2009)

Water Resources

Non-conventional water resources

Desalinated seawater Water harvesting

Nile River (55.5 BCM/y)

- Shallow G W. (6.2 BCM/y)
- **Deep G W. (1.3 BCM/y)**
 - Rains (1.3 BCM/y)

Water Uses

I	Demand:	Agricu	alture (84.5%)	Domestic (6%	6) Industry (9.5%)	
WQ standard for irrigation (Law 48/1982)						
C	OD total		80 mg/l			
D	OD_5 total O		40 mg/l			
T: N	SS O ₂ -N		50 mg/l 50 mg/l			
F-coli 5×10 ³ MPN		V/100ml	× ×			
4.5 BCM			NO 1.	5-2 BCM	No records	ľ
			mixing			
	Reuse pu	imp station			Drain	
	1- Offic:	ial reuse	2- Unofficia	l reuse	3- Emergency reuse	

Sources of Pollution in Drains

2. Simulation-Optimization Model for Intermediate Reuse of Agriculture Drainage Water in Egypt

The criteria for selection Reuse locations

- The distance between the drain and canal where mixing occurs should not exceed 1 km;
- Mixing locations should be downstream from the current and future drinking water intakes;
- The mixing location should also be upstream from outflows of
- point source pollution, such as the wastewater treatment plants
- of factory outlets; and
- The quantity and quality of the drainage water should satisfy canal water quality criteria after mixing.

Study area

El-Qalaa basin

<u>1. Water quality simulation</u>

Export coefficient model

2. Optimization for waste load allocation

Decision variables

1. Treated quantities from nonpoint sources (Urban & Rural)

2. Treated quantities from point sources

3. Removal fractions for point and non-point sources

Objective functions

Objective 1 (min. treatment cost)

Objective 2 Min. the difference of COD and TSS with the std

Main Stream

.

Objective 3

Min. the difference of COD and TSS at the end with the std

ε-constraint method and GA Model

WLA results

Science of the Total Environment 536 (2015) 79-90

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Thank You For your Kind Attention