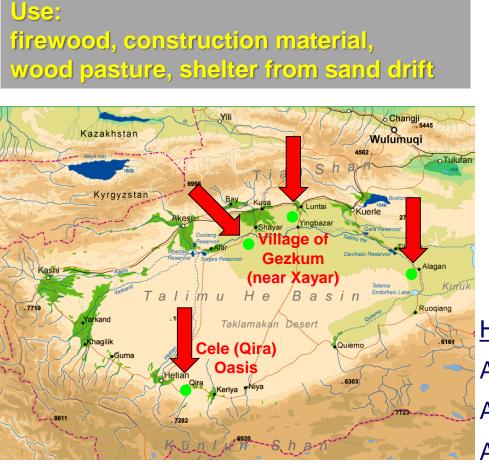
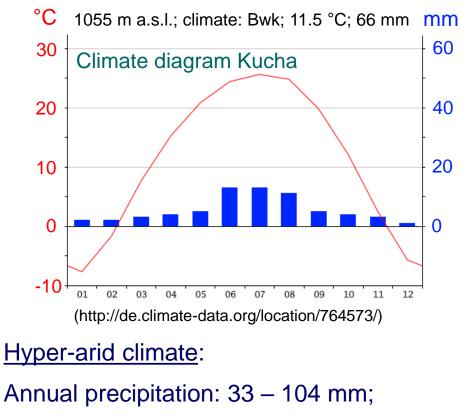
Performance of *Populus euphratica* in riparian forests of the Tarim River Basin, NW China: Effects of use and distance to the ground water

Frank THOMAS, Michael JESCHKE, Petra LANG, Ximing ZHANG

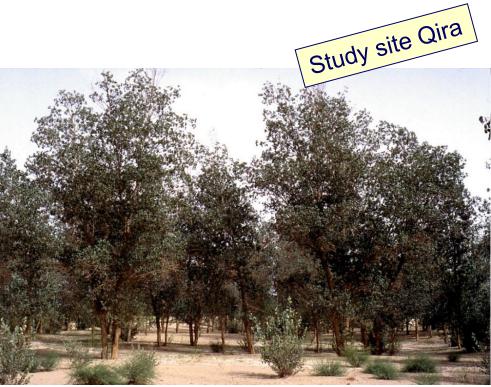
Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences




Geobotany — www.geobotanik.uni-trier.de University of Trier, Germany

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Riparian poplar forests: study sites


Annual mean temperature: 11 °C;

Annual potential evaporation: ca. 2600 mm.

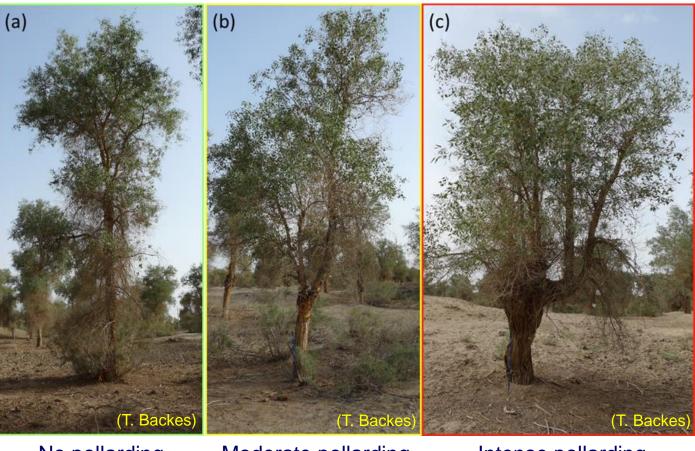
Projects: Xayar: SuMaRiO (2011 - 2015); Cele: EU INCO-DC, 1998 - 2001

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Stem diameter increment: effects of stem harvest

Approx. 20-year-old stand from vegetative regeneration after clear-cutting:

LAI: $1.9 - 2.7 \text{ m}^2 \text{ m}^{-2}$, Stand density: $2313 - 3425 \text{ trees ha}^{-1}$, Basal area: $10.2 - 14.9 \text{ m}^2 \text{ ha}^{-1}$; Above-ground tree biomass (t ha⁻¹): No harvest: 23.7 ± 0.9 ; harvest: 21.2 ± 0.8


Harvest:

decrease in stem density to half its original value (also resulting in a more uniform stem distribution)

Treatment	Stem diameter increment (mm) (mean of 2 plots ± 1 SE)
Control	0.88 ± 0.06 b
Harvest	1.31 ± 0.09 a
	(Data from: Gries et al. 2005. <i>Plant Ecology</i> 181 : 23–43)

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Study site Xayar: Effects of use intensity (wood harvest by pollarding)

No pollarding (tree height: 11.9 m) Moderate pollarding (tree height: 7.3 m)

Intense pollarding (tree height: 6.4 m)

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

ANCOVA

Differences in cross

section area-related

stem hollowness

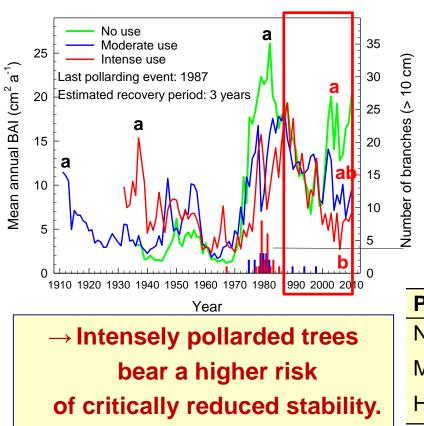
independent of tree age!

2015

Study site Xayar: Use intensity and tree morphology

Groundwater distance in all plots: 2.0 – 2.2 m

(Means \pm 1 standard deviation; values with different lower-case letters are significantly different)


Pollarding intensity	No Use	Moderate use	Intense use	
Tree height (m)	9.8 ± 2.1 a	8.2 ± 2.2 b	7.6 ± 1.8 c	
Diameter at breast height (dbh) (m)	0.24 ± 0.08 b	0.35 ± 0.11 a	0.39 ± 0.14 a	
Height:dbh	43.3 ± 10.5 a	25.7 ± 9.6 b	21.1 ± 5.9 c	
Crown projection area	18.7 ± 8.4 a	11.2 ± 5.6 b	7.8 ± 2.7 b	
Number secondary stems/branches per tree	1.5 ± 0.5 b	2.0 ± 1.0 ab	2.7 ± 1.1 a	
Percentage of hollow trees	17.4	65.2	87.0	
Degree of hollowness (% of radius)	3.1 ± 7.5 b	35.0 ± 29.9 a	52.3 ± 26.9 a	
Degree of hollowness (% of stem area)	0.6 ± 1.7 b	20.8 ± 22.2 a	34.3 ± 22.6 a	

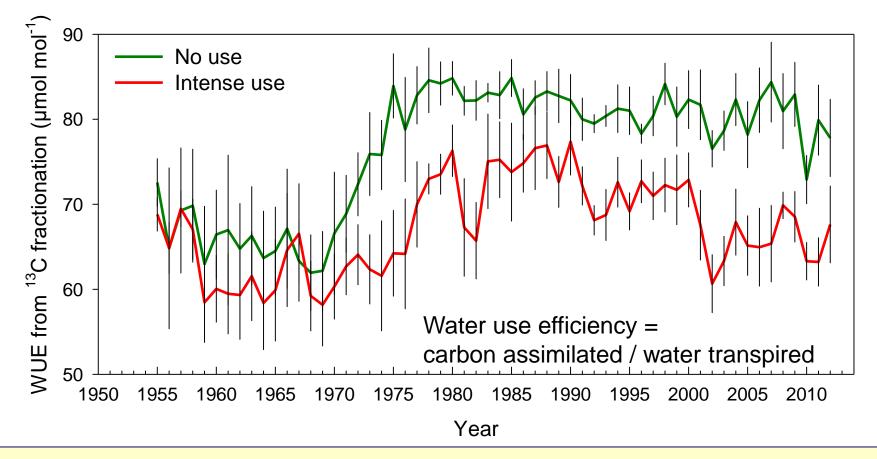
(Data from: Lang et al. (2015), Forest Ecology and Management 353: 87-96)

 \rightarrow Pollarding \rightarrow trees: more hollow, shorter, thicker stems, smaller crowns.

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

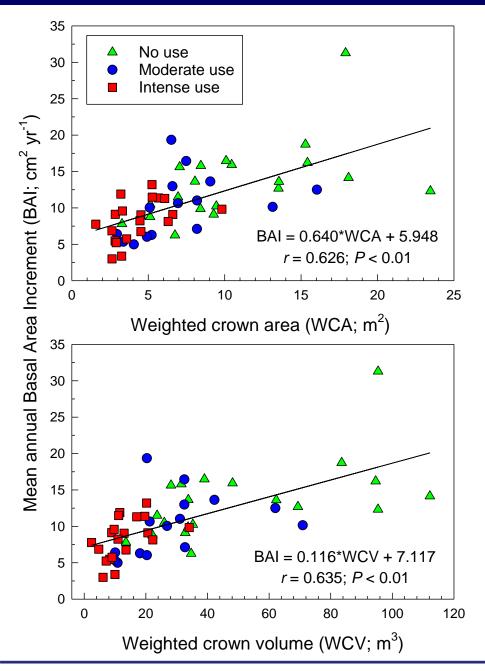
Study site Xayar: Use intensity, basal area increment, stem hollowness

Pollarding: smaller BAI (intense use, 1987-2010)


Critical threshold of stability in hollow trees:

Stem wall thickness t / cross section radius R < 0.3.

Pollarding intensity	Number of trees with $t/R < 0.3$		
None	0		
Moderate	0		
High	8 out of 23 (35%)		

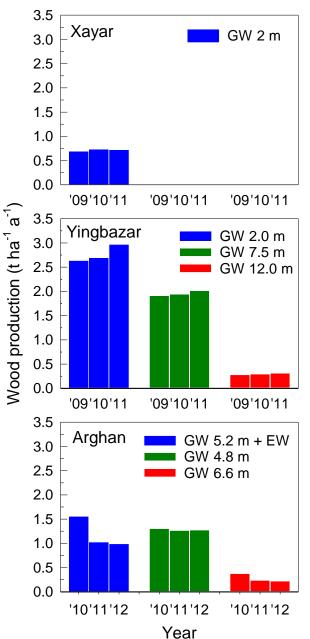

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Calculation of water use efficiency (WUE) from tree-ring carbon isotope ratios ($\delta^{13}C$)

Lower WUE in intensely used trees → indicative of compensatory growth due to increased rates of photosynthesis.

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Application of crown morphology measurements: assessing stem growth increment


Mean annual basal area increment (BAI), 1911 – 2011:

Crown projection area and crown volume weighted by the ratio of vertical crown extension to total tree height

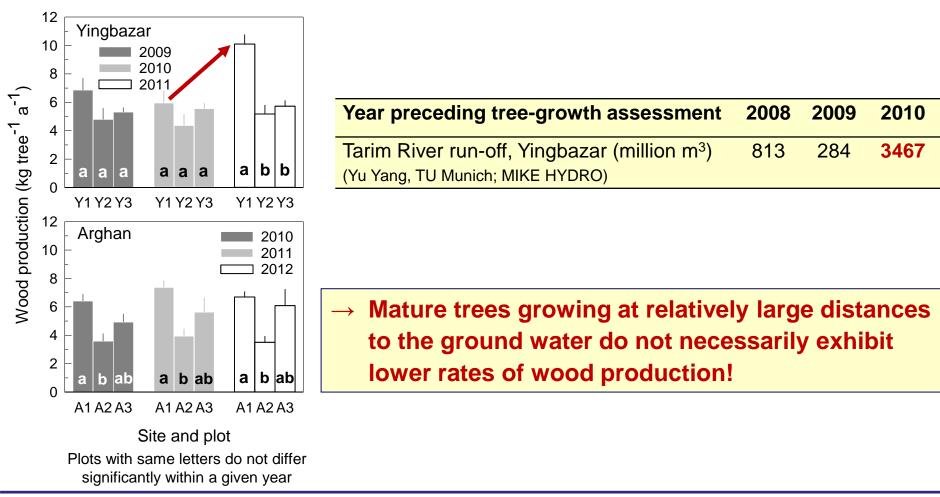
→ Aim:

Combination with remote sensing techniques at a landscape level.

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Populus euphratica: wood production along a gradient of groundwater depths

Wood production calculated using tree-ring analyses and allometric regressions adopted from Chen & Li (1984), *For. Sci. Technol. Xinjiang* **3**: 8-16

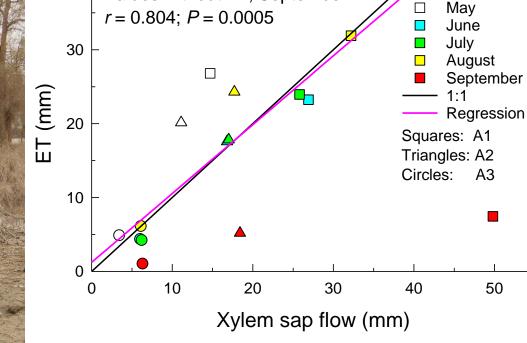

Site and plot	X1	Y1	Y2	Y3	A1	A2	A 3
Tree age (years)	30	26	28	77	46	37	52
Stand density (trees ha ⁻¹)	121	467	378	67	166	257	59

Yingbazar, Arghan: variances among years are largest in plots with largest water supply

→ Lower productivity of <u>stands</u> at larger distances (> 7 m) to the water table!

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Populus euphratica: wood production of mature trees (60 – 99 years) along a gradient of groundwater depths



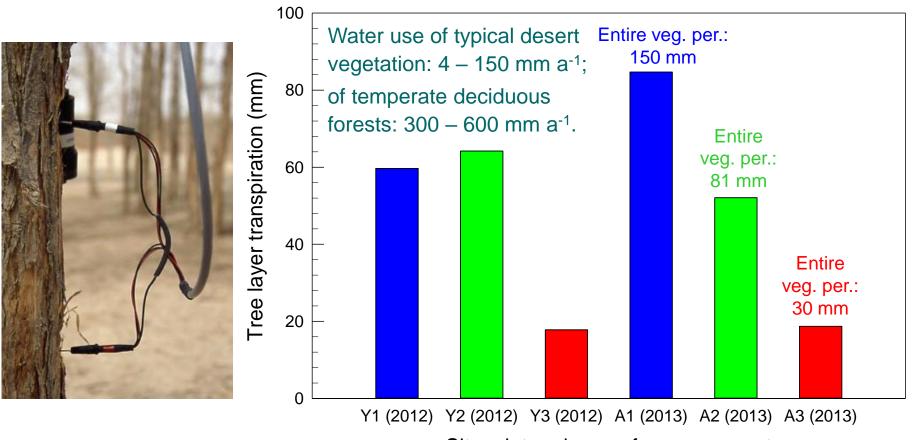
University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Relationship sap flow / Penman-Monteith: Arghan site, 2013

40

Values without A1, September:

Installation of climate stations at the study sites Xayar, Yingbazar, Arghan (operated by the Institute of Ecology and Geography, CAS)

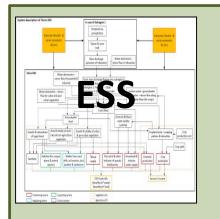

→ Reasonable consistency between sap flow measurements and Penman-Monteith approach.

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Lang, Jeschke, Schäfer, Zhang, Thomas

Water use, May - August

Xylem sap flow, Granier method, May 26 - August 26


Site, plot and year of measurement

→ Water use decreases with increasing distance to the ground water (and an increase in tree age and decrease in stand density).

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Lang, Jeschke, Schäfer, Zhang, Thomas

- Poplar wood is a renewable resource; its <u>use through pollarding</u> in stands growing at short distances to the groundwater should be permitted as Euphrates poplar has a high regeneration potential after moderate intensities of pollarding.
- With increasing distance to the groundwater, the <u>extent of</u> <u>supporting and provisioning ES (wood production) decreases</u> at the stand level (but not necessarily at the tree level).
- At large distances to the groundwater, the extent of ESS will decline due to a <u>dwindling regeneration capability</u> of the trees.

- <u>Regeneration capacity</u> of trees <u>in dependence upon pollarding</u> <u>intensity</u>;
- <u>Growth increment</u> of trees and stands growing at close distances to the groundwater <u>in dependence upon river discharge</u>;
- <u>Wood production</u> and <u>water use</u> of trees and stands growing at different distances to the groundwater.

Acknowledgements: BMBF, Sustainable Land Management, SuMaRiO, 01LL0918K

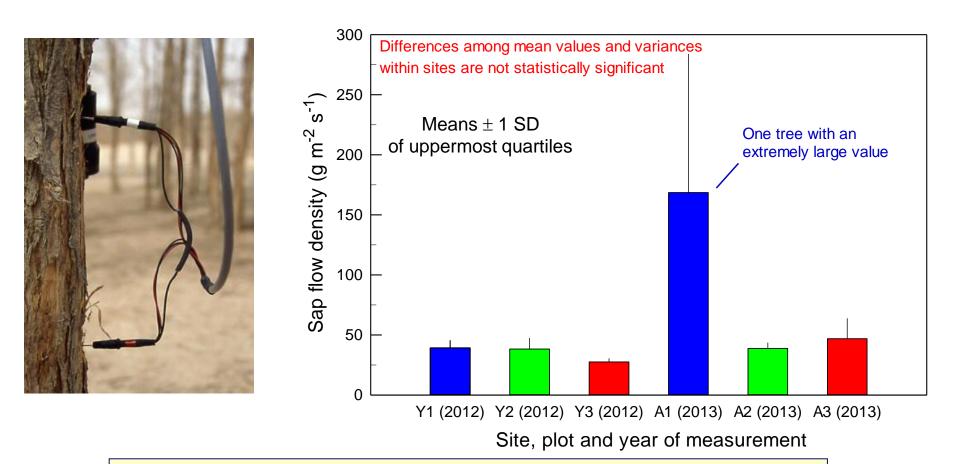
Thank you for your attention!

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Recovery from pollarding

Index of resilience I_R:

ratio of the three-year averages of the annual BAI after and before the pollarding event;


 $I_R \ge 1$: full recovery or increase in growth; $I_R < 1$: decline in growth after pollarding

Pollarding intensity	I_R (means ± 1 standard deviation)	Significantly different from 0?
Moderate	0.79 ± 0.36 a	No
High	0.91 ± 0.40 a	No

 \rightarrow Even intensely pollarded poplars are able to recover from pollarding.

Populus euphratica: sap flow density (sapwood)

Xylem sap flow, Granier method, May 26 - August 11

→ Differences in water use and productivity not due to limitations in water transport capacity of the stem!

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography

Lang, Jeschke, Schäfer, Zhang, Thomas

Conclusions on the effects of pollarding

Pollarded trees (in particular, intensely pollarded ones) ...

- ... exhibit distinct morphological changes;
- ... display reductions in the increments of tree rings and basal area;
- ... bear increased risk of instable stems (after intense pollarding);
- ... but are capable of regenerating to a certain extent (Index of resilience close to 1); <u>compensatory responses</u>:
 - formation of secondary shoots,
 - decrease in iWUE (as a consequence of higher rates of gas exchange,);

\rightarrow Moderate intensities of pollarding seem to be sustainable.

Conclusions on the effects of groundwater distance

"Ecological water" (Arghan site) seems to enhance stem increment growth.

With increasing distance to the groundwater level ...:

- ... Stands are sparser and display a reduced tree cover;
- ... Trees are older, exhibit an altered morphology and a decrease in growth increment;
- Tree increment decoupled from river run-off relationship between river run-off and stem diameter increment significant only at small distance to groundwater (Yingbazar);
- ! Redirection of water from stands close to the groundwater towards stands with larger distances to the groundwater might reduce growth in stands close to groundwater.

University of Trier, Geobotany – Xinjiang Institute of Ecology and Geography