

Growth and yield response of cotton to deposition of chemically inert dust in North West China

Shamaila Zia-Khan, Wolfram Spreer, Yang Pengnian, Xiaoning Zhao, Hussein Othmanli, Xiongkui He and Joachim Müller

Universität Hohenheim Institute of Agricultural Engineering Tropics and Subtropics Group Stuttgart, Germany

Introduction

- Xinjiang is known as "dust center" of the Eurasian mainland
- Impact of dust deposits on plant canopy are:
 - Reduction of light absorption for photosynthesis
 - Reduction of stomatal conductance
 - Reduction of the plant biomass formation

Objectives

- Objective of this study was to examine the effects of dust deposits on cotton leaves and estimate its impact on:
 - stomatal conductance
 - canopy temperature
 - biomass formation
 - □ yield

Experimental site

- Experiment was conducted at the Korla experimental station of Xinjiang Agriculture University, Kuerle City
- Annual precipitation 60 mm vs. potential evaporation of 2,450 mm
- Silt loam soil
- Field capacity (FC) at 25% SMC
- Permanent wilting point (PWP) at 9% SMC
- Drip irrigation under plastic mulch

Experimental site

- Cotton (Gossypium hirsutum L., Xinluzhong-21)
- Sown under transparent polythene film as mulch
- Rows in N-S direction

Experimental site

ET0=693mm I=631mm P=40mm

24 times irrigations

Experimental design

- Treatment 1
 - Leaves were cleaned with water
 - 3 days interval
 - or after a natural dust fall
- Treatment 2
 - Application of dust
 - □ 100 g/m² dust from surrounding
 - 10 days interval
- Control
 - Natural conditions

Experimental design

Experimental design

 Measurement of soil moisture content, stomatal conductance and canopy temperature

TDR profile probe Porometer Thermal image

Results

Stomatal conductance

Canopy temperature

Canopy heating vs. dust load

Canopy temperature vs. stomatal conductance

Biomass formation

Yield

Summary

- 30% reduction in the stomatal conductance by dust treatment
- 4 °C higher temperature of dusted canopy compared to cleaned leaves
- 28% yield reduction of the dusted canopy compared to control
- 10% yield increase by cleaning compared to control
- Future research should focus on measures to reduce the dust deposition

Thank you for your attention

Joachim Müller Institute of Agricultural Engineering 70593,Stuttgart, Germany

Joachim.mueller@uni-hohenhem.de

funded by

