Aquatic Biodiversity of the Tarim River referring to macro invertebrates and fish

SuMaRio final public conference, Munich - Dec 10 -11, 2015

Work Package 4.1.5 Aquatic Biodiversity of the Tarim Ecosystem applied by Fish Diversity and Macro Invertebrates related to Ecosystem Function (ESF) and Ecosystem Services (ESS) Dr. Benno Kügel & Prof. Dr. Bernd Cyffka, Catholic University of Eichstaett / Ingolstadt, Germany

Federal Ministry of Education

Questions

- 1. Fish fauna in Tarim River species and abundance today and in the past ? Which species were used by fisher men? Who lived of the fish?
- 2. MIV-communities in Tarim River species and abundance? How can MIV survive in a sandy-muddy river? What are the MIV-habitats?
- 3. What are the pressures and impacts for fish and miv communities? How does water quality (salinity, pesticides) and degraded hydromorphology (dams, reservoirs, missing alluvial forest) affect fish and MIV?
- 4. Ecological Concept of Tarim River from the aquatic point of view?

MANAGEMENT

1. Selecting chemical and biological sampling sites

SPONSORED BY THE Federal Ministry of Education and Research

- 1. Selecting chemical and biological sampling sites
- 2. Recording physiographical data of each sampling site

	WP 4.1.5 Aquatic Biodiversity of Tarim Ecos Dr. Benno Kügel	ystem		Physiography 2	
	CU Eichstätt		River	TARIM Alar No 9 Date Sun 03.06.2012	
	Physiography 1		Sampling site		
River	TARIM Alar No 9		Sediment texture		
Sampling site	10 km above Alar		Riverbed	non-solid solid muddy x	
Easting	Date, Time	Sun 03.06.2012	Pelalart	saprobel	
Northing	Processor	Dr.Benno Kügel	Periphyton	green algae diatoms cyanobacteria sulphurbacteria	
Motoorological data		r bar in n tar a n bar in h-bar	Pollution	nonex waste sewage others	
Before sampling	precipitation no precipitation	dry period			
During sampling	precipitation heat	frost	Water features	clear turbid very turbid x	
	snow melt in progress x		, a blary		
Hydrological Data	CO 3. C	C (0.0 - 0) - (C (0.0 - 0) - (C (0.0 - 0) - (C (0.0 -	Colour	Ground visibly yes no x	
Discharge	very low low	medium x high x	Smell		
Discharge [m ³ / s]	approx. 2 0 0 0	measured estimated x	Cillen		
Water level [cm]	1 to 3		Impairments on aquati	ic communities	
Velocity	very fast (>1m/s) x fast (1-0,3	m/s) x slow (< 0,3 m/s)		none no water mudd x toxic impacts	
	stationary			flood snow melt dams x	
Flow Diversity	high medium low	none		others	
Lenitic areas	< 10% x 10 - 25% 25 - 50%	50 - 75%			
Shade/vegetation	sunny y semi-shade shady		Chemical/ physical dat Temperature °C	a 19.2 DH 8.16	
Discular un estation			Oxygen O2- Sat [%]	8 9 . 5 Conductivity [µS/cm] 6 7 3	
Riparian vegetation	High ground water level	el! approx. 20 cm difference dry & wet	Oxygen O2 [mg/l]	7,29	
	bushes species: Tamarix in flood plain		water sample	x Salinity 0.38 g/l Photo documentation x	
	reed species: Carex + Juncus in flood plain shrubs species:		Comments to Physiography	high ground water level in flood plane 20cm differ between wet and dry	
				water bed moved within flood plain	
	gras species:	none	Aquatic life	fish alrvae 4	
Special elements	bay dead tree roots x	overgrowing vegetation	Fish species		
Substrata					
Mineral Substrates	[5%steps] Organic substr	ates [5%steps]			
Lithal (6-20 cm)	Debris (organic se	diment)	MIV species	Mysidae 4	
Gravel (2-6 cm)	Dead Wood	10			
Sand (6 µm-2 cm)	30 Roots	1 0		Gomphus 2 Chironomidae red 6 Baetis 2	
Silt (< 6 µm)	4 0 Phytobenthos				
	Submerged Macro	ophytes			
	Species of submerged Macrophytes:			a fairh dh' fa fairh	
			Comments to		
			ыоюду		

- 1. Determination of chemical and biological sampling sites
- 2. Recording physiographical data of each sampling site
- 3. Measurements of physico-chemical parameters at various flow (temperature, pH, conductivity, oxygen, secchi-depth, suspended material)

- 1. Determination of chemical and biological sampling sites
- 2. Recording physiographical data of each sampling site
- 3. Measurements of physico-chemical parameters at various flow (temperature, pH, conductivity, oxygen, secchi-depth, suspended material)
- 4. Setting fish traps

- 1. Determination of chemical and biological sampling sites
- 2. Recording physiographical data of each sampling site
- 3. Measurements of physico-chemical parameters at various flow (temperature, pH, conductivity, oxygen, secchi-depth, suspended material)
- 4. Setting fish traps
- 5. Sampling macro invertebrates by kick-sampling

SPONSORED BY THE Federal Ministry of Education and Research

SUSTAINABLE

FONA

BMBF

During flooding: extremely high amount of suspended material, turbidity almost zero, sedimentation rate > 25 %

Sand and silt/mud with low density of MIV

Physiographical data

Aksu River (500 m below flood			
gate)	10.08.2011	31.05.2012	23.10,2013
Discharge	high (snow melt!)	medium / rising	Low to medium
Velocity	very fast (>1m/s)	very fast (>1m/s)	fast
Flow Diversity	high	medium	medium
Shade	sunny	sunny	sunny
Mineral Substrates	70% sand	60% sand	60% sand
	30% silt	40% silt	40% silt
Organic Substrates		50% debris	
		10% dead wood 10% roots	
Riverbed	solid	muddy	muddy
Turbidity	very turbid	very turbid	turbid
Colour	ocher	ocher	ocher
Smell	muddy	none	none
Impairments on Aquat.	mud	mud	mud
Communities	flood	dams	dams
Sedimentation rate [ml/l]	> 250	> 100	1
Secchi [cm]	<1	< 3	< 3

Biological data (Aksu River)

	Macroinvertebrates	Fish	Aquatic Macrophytes	Flora
10.August 2011		Triplophysa yarkandensis Triplophysa bombifrans	Potamogeton pectinatus Myrhiophyllum spicatum Polygonum sp.	Typha angustifolia Tamarix sp. Scirpus yagara Pragmites comm. Chara sp
31. May 2012	Baetis 5 Chironomidae red 2	T. yarkandensis T. Bombifrans Carps		Thypha angustifolia Tamarix spec Scirpus yagara Phragmites comm.

SPONSORED BY THE Federal Ministry of Education and Research

Gravel stones offer habitat to settle on the stones and in the interstitial space.

SPONSORED BY TH

Chemical data (Aksu River)

Parameter	10.08.2011	31.05.2012	23.10.2013
Temperature [°C]	18.5	21.2	11.6
рН	8.19	8.13	8.1
Conductivity [µS/cm]	309	452	9700
Oxygen O2 [mg/l]	8	9.7	9.2
Oxygen O2- Sat. [%]	91	99	95.5

AND MANAGEMENT

SPONSORED BY THE

Federal Ministry

of Education

and Research

Recent reference site with alluvial forest similar to historical drawings from 1900 (Sven Hedin)

- Input of wood, leaves and adult insects as a food supply for fish
- Land-water-connection which supplies habitat for adult MIV to pass the whole life cycle

General results of aquatic investigations in Tarim river for macro invertebrates and fish

1. Low aquatic biodiversity and low richness of species

2. Small individual abundance and little biomass

General speaking: Little aquatic life in Tarim River !!

Concept of Tarim River Disturbances

1. The missing alluvial forest allows no supply with dead wood, leaves and POM

- 2.Due to the misssing alluvial forest there is no input of adult insects to the river, which are an essential food supply for fish
- 3. The lack of dead wood (and may of gravel) offers no substrate and no habitat for MIV and fish: no shelter, no spawning habitat, food shortage
- 4. The dominance of sand and silt is hostile for aquatic organisms through sandblisting and missing interstitial space. Erosion from logging is detoriating this effect (may be covering gravel stones)
- 5. Dams from reservoirs are blocking the transport of gravel and drift wood
- 6. Dams from reservoirs interrupt river contiunuum and migration of aquatic animals
- 7. Toxic substances and increasing salinity put stress on aquatic communities

衷心感谢! Thank you for your attention!

