Ecosystem Functions and Ecosystem Services – Ecosystem Services of Riparian Ecosystems

Frank M. THOMAS, Birgit KLEINSCHMIT

Geobotany, University of Trier

University of Trier, TU Berlin

Ecosystem Functions and Ecosystem Services – Definitions

Reiss et al. (2009), Trends in Ecology and Evolution 24: 505-514:

Ecosystem functions (ESF) = ecosystem processes:

"Changes in energy and matter over time and space through biological activity ... governed by the interplay of abiotic factors, [mediated] by organisms."

"Ecosystem functioning: the joint effects of all processes that sustain an ecosystem."

Key ecosystem processes:

- Primary productivity;
- Resource consumption;
- Trophic interactions;
- Respiration;
- Decomposition.

ESF studied in riparian forests:

- Production of above-ground tree biomass;
- Water use.

Ecosystem Services – Definition

Millenium Ecosystem Assessment (Hassan et al. 2005, vol. 1):

"Ecosystem services are benefits people obtain from ecosystems."

Ecosystem services (ESS) comprise:

- Provisioning services (PS): e.g., production/storage of food, water, fiber, fuel;
- Supporting services (SS): e.g., biomass production, nutrient cycling, soil formation;
- Regulating services (RS): e.g., mitigation of disturbances and catastrophic events;
- Cultural services (CS): e.g., recreation, education, spiritual benefits.

ESS studied in riparian forests:

- PS, SS: Production of above-ground tree biomass;
- RS: Shelter from sand drift.

Populus euphratica is a phreatophyte ..

... "a plant that habitually obtains its water supply from the zone of saturation, either directly or through the capillary fringe."

(Meinzer 1923, U.S. Geological Survey Water-Supply Paper 494).

- ① Establishment of seedlings (generative phase);
- Shoots partly covered with sand (or decrease in the groundwater level) (onset of vegetative phase);
 Dune formation.

Rapid root growth of *P. euphratica*

(M. Manegold)

University of Trier, TU Berlin

In *Populus euphratica*, O root suckers can form extensive clones

Clone size of *Populus euphratica*: up to 121 ha (Vonlanthen et al. 2010, *Am J Bot*)

→ Vegetative regeneration gains importance (but is increasingly hampered) with increasing distance to the groundwater.

University of Trier, TU Berlin

Populus euphratica stands growing at larger distances to the groundwater ...

... are older and sparser,

... have a lower capability of regeneration;

 \rightarrow will eventually die off.

University of Trier, TU Berlin

- MODIS time series NDVI, 250m, 16-days
- *Tamarix* 1km from Tarim (near Korghan)
- strong positive trend after first water diversion
 - followed by a trend break in Sept 2002
 - steady state since then

River regulation

ESF and ESS of riparian ecosystems

Trends in post-disturbance recovery rates of Tugai forest

- **Two time periods** under investigation (1984-1999 & 2000-'15) with Landsat Sensor
- More than 1/2 of poplar & grass area has negative trend before water diversion (middle section)
- Upper & Middle section have highest trend increase after water diversion

Riparian Populus euphratica forests: study sites

Hyper-arid climate:

Annual precipitation: 33 – 104 mm;

Annual mean temperature: 11 °C;

Annual potential evaporation: ca. 2600 mm.

Projects: Xayar: SuMaRiO (2011 – 2015) Cele: EU INCO-DC, 1998 – 2001

University of Trier, TU Berlin

Structure of the Populus euphratica stands

X = Xayar; Y = Yingbazar, A = Arghan; $1 \rightarrow 3$: decrease in water supply

Site and plot	Y1	X1	A1	A2	A3	Y2	Y3
			(+ tEW ¹)				Ν
Distance to groundwater (m)	2.0	2.0	≈ 5.0	≈ 5.0	6.6	7.5	12,0
Tree age (years; 3-year average)	26	30	46	37	52	28	77
Stand density (trees ha ⁻¹)	467	121	166	257	59	378	67
Tree cover (%)	81	20	31	29	5	35	6
Basal area (m² ha-1)	18.7	5.9	15.9	16.4	5.8	15.7	13.3
Total above-ground tree biomass (t ha-1)	55.6	13.9	28.0	25.6	6.9	31.3	15.6

¹ temporary "ecological water"

 \rightarrow Larger groundwater distance \rightarrow older, sparser stands; lower biomass.

Above-ground wood production of poplar stands in the last 3 years of analyses

Wood production calculated using tree-ring analyses and allometric regressions adopted from Chen & Li (1984), *For. Sci. Technol. Xinjiang* **3**: 8-16

- Productivity within the range of typical woody desert vegetation (≤ 2.6 t ha⁻¹ a⁻¹),
- but lower than in young (20-yr-old) coppice stands (≤ 6.1 t ha⁻¹ a⁻¹; Qira site);

 \rightarrow Significant relationships with tree age and stand density via groundwater distance.

Groundwater distances: long-term BAI increment

 \rightarrow Trees at small groundwater distance \rightarrow potentially larger basal area increment.

University of Trier, TU Berlin

Changes in the course of the Tarim River

Middle reaches

University of Trier, TU Berlin

Study site Yingbazar: basal area increment related to river run-off

Populus euphratica stand at a <u>close distance</u> to the groundwater (Y1; 2.0 m); 1971 – 2005; river run-off of the preceding years:

to the groundwater.

(Data from Diploma Thesis J. Ahlborn and from Thevs et al. 2008, Phytocoenologia 38: 65-84)

University of Trier, TU Berlin

Study site Xayar: Effects of use intensity (wood harvest by pollarding)

No pollarding (tree height: 11.9 m) Moderate pollarding (tree height: 7.3 m)

Intense pollarding (tree height: 6.4 m)

University of Trier, TU Berlin

Study site Xayar: Use intensity and basal area increment

(From: Lang et al. 2015, For. Ecol. Manage. 353: 87–96)

A word on biodiversity ...

3-5 relevés per plot, 400 m²; T = tree layer, S = shrub layer, H = herb layer

Plant species	Coverage (%)					
	Y1	Y2	Y3	A1	A2	A3
Populus euphratica, T	18	15	3	11	13	2
Populus euphratica, S	1	2		0.3	0.3	
Tamarix ramosissima, S	1	0.2		4		< 0.1
Halimodendron halodendron, S	0.5					
Lycium ruthenicum, S		0.2			< 0.1	
Cynanchum sibiricum, S	0.1					
Populus euphratica, H	0.1			< 0.1		
Tamarix ramosissima, H				< 0.1		
Phragmites australis, H	25					
Glycyrrhiza inflata, H	0.8					
Cirsium cv. arvense, H	< 0.1					
Heteropappus altaicus (?), H	< 0.1		Ν			N
Mean number of species	6.7	2		1.6	1.2	0.8

\rightarrow Riparian forests are species-poor, but can harbor important medicinal plants.

Conclusions

Supplementary water from river run-off fosters recovery of vegetation and enhances stem increment growth (up to a distance of \approx 5 m above GW level?).

With increasing distance to the groundwater level ...:

- ... Poplar trees are older and lose their capability of generative (and vegetative) regeneration;
- ... Poplar stands are sparser, genetically less diverse, display a reduced tree cover and produce less wood;
- ... Tree growth becomes decoupled from water supply by the river;
 - → Redirection of water from stands close to the groundwater towards stands with larger distances to the groundwater might reduce growth in stands close to groundwater.
- Poplar trees can tolerate moderate intensities of wood harvesting by pollarding
 → moderate pollarding should be permitted to make use of this renewable resource.

SuMaRiO Final Conference, Munich, 10.-11.12.2015

Acknowledgements: BMBF, Sustainable Land Management, SuMaRiO, 01LL0918K

Thank you for your attention!

Recovery from pollarding

Index of resilience I_R:

ratio of the three-year averages of the annual BAI after and before the pollarding event;

 $I_R \ge 1$: full recovery or increase in growth; $I_R < 1$: decline in growth after pollarding

Pollarding intensity	I_R (means ± 1 standard deviation)	Significantly different from 0?
Moderate	0.79 ± 0.36 a	No
High	0.91 ± 0.40 a	No

 \rightarrow Even intensely pollarded poplars are able to recover from pollarding.